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Direct Attached Flash Storage

• Storage devices directly attached to the host through PCIe

• Compute and memory resources are coupled with storage devices

• Cannot scale to a large capacity (hundreds of  TB)
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• Benefits of disaggregated storage architecture: 

• Independent scalability

• Flexible configuration

• Fault isolation

• However, network brings more communication overhead

Disaggregated Flash Storage

• Nodes with compute and memory resources are connected to storage servers
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Cache Benefits for Disaggregated Storage

• Absorb requests for frequently accessed data

• Reduce network and storage traffic and contention

• Reduce latency by accessing data in the cache

However, benefits and influences of cache design are under explored/not-public.
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• Background

• Motivation

• Solution

• Future Work and Conclusion
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Cache in Disaggregated Storage Architecture

• Client Local Caching

• Server Only Caching

• Client–Server Independent Caching

6



Client

App

Cache

Server

Storage

Client

App

Cache

Client

App

Cache

Cache in Disaggregated Storage Architecture

Client Local Caching

• Utilizing only the client-side cache

• Example: Linux NVMe over Fabric extension, FS-cache for NFS
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Caching in Disaggregated Storage Architecture

Client Local Caching

• Example: Linux NVMe over Fabric extension
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Cache in Disaggregated Storage Architecture

Client Local Caching

• Benefits:

• Reduces network communication overhead when locality is good

• Saves storage server CPU time by letting it only do IO jobs

• Drawbacks:

• Moves data through network after a cache miss

• Overlooks memory resource in server-side for caching (up to hundreds of GB)
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Cache in Disaggregated Storage Architecture

Server Only Caching

• Deploying cache only on server side

• Example: Azure Blob Storage, Amazon S3
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Cache in Disaggregated Storage Architecture

Server Only Caching

• Example: Azure Blob Storage
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Cache in Disaggregated Storage Architecture

Server Only Caching

• Example: Azure Blob Storage
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Cache in Disaggregated Storage Architecture

Server Only Caching

• Benefits:

• Enables easy client data sharing as all requests go through the server

• Saves client-side memory for application use

• Drawbacks:

• Suffers from network latency for every request

• Causes high server CPU usage due to cache management
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Cache in Disaggregated Storage Architecture

Client-Server Independent Caching

• Leveraging caches on both sides that are managed independently 

• Example:  Azure Managed Disk, Databricks Query Caching
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Cache in Disaggregated Storage Architecture

Client-Server Independent Cache

• Example:  Azure Managed Disk, backed by Azure Blob Storage
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Cache in Disaggregated Storage Architecture

Client–Server Independent Caching

• Benefit:

• Utilizes memory resources as caches in both clients and servers

• Absorbs write-back with a secondary cache layer, thereby reducing stalls

• Drawback:

• Causes data duplication due to invisibility between clients and servers

• Leads to suboptimal behavior due to cache management conflict 
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Cache in Disaggregated Storage Architecture

To sum up:

• Different caching approaches have fundamentally different architectures

• Strengths and weaknesses of each approach vary across dimensions

• No single approach is optimal in all scenarios
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Experiment Setup

• Hardware Platform

• 1 client node and 1 server node

• Each machine has 

• one 16-core Intel Xeon Silver CPU

• 960 GB Samsung PCIe4 NVMe SSDs

• 100 Gbps Mellanox ConnectX-6 NIC, with a 100 Gbps Ethernet switch

• Workload

• Total of 128 GB split across 32 threads, with cache warm-up

• For all 3 approaches, total cache size is limited to 36 GB
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Cache Duplication

Client-Server Independent caching has high cache duplication

Workload Rand read Rand write Seq read Seq write

Duplication ratio 22.73% 22.56% 21.45% 23.73%
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Throughput Comparison

•  Independent client-server caching performs worse under read workload

• Cache duplication reduces effective cache space and degrades read performance
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Throughput Comparison

•  Client-local and Server-only caching performs worse under write workload

• Absence of a secondary cache layer worsens eviction-induced stalls

23



Throughput Comparison

• Client-local and Server-only caching performs worse under write workload

• Absence of a secondary cache layer worsens eviction-induced stalls
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Throughput Comparison

• Client-local and Server-only caching performs worse under write workload

• Absence of a secondary cache layer worsens eviction-induced stalls
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Unfairness between Clients

• Performance of different threads vary dramatically using Independent caching

• Skewed cache occupancy across different caches leads to unfairness

5.7x
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Summary of Challenges

• Independent caching loses effective cache capacity due to invisibility

• Client local and Server only caching suffer from lack of a secondary cache layer

• All caching approaches lack cache fairness guarantee
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Proposed – Coordination Cache across Clients and Servers

• Expose visibility and control of server cache to clients through richer abstractions

• Split cache management workload across clients and servers

• Deploy different forms of cache indexes on the client and server side

• Manage server-side resource for cache fairness
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Client-Side Cache Management
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• Unified client-side index for client and server caches

• One-side RDMA operations for accessing server cache entities

• Message passing interfaces for cache control and management



Server-Side Cache Management

• Lightweight cache metadata for tracking server-side cache 

• Resource monitoring for cache fairness

• Utilizing clients’ hints for adaptive cache policy
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Challenges for Cache Coordination 

• Efficient abstractions for clients to provide hints and control server-side cache

• Coordinated client-server cache index for minimizing synchronization overhead

• Isolation and security in multi-tenant environments

• Consistency control across multiple clients' local caches
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Conclusion

• Analyze different caching approaches in disaggregated storage architecture

• Conduct a multi-dimensional evaluation 

• Propose a preliminary solution for client-server cache coordination
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