
Can a Client–Server Cache Tango

Accelerate Disaggregated Storage?

The 17th ACM Workshop on Hot Topics in Storage and File Systems

Linjie MaLinjie Ma Jian ZhangJian Zhang
Marie

Nguyen
Marie

Nguyen
Sudarsun
Kannan

Sudarsun
Kannan

Direct Attached Flash Storage

• Storage devices directly attached to the host through PCIe

• Compute and memory resources are coupled with storage devices

• Cannot scale to a large capacity (hundreds of TB)

Memory

Compute

Storage

PCIe

2

• Benefits of disaggregated storage architecture:

• Independent scalability

• Flexible configuration

• Fault isolation

• However, network brings more communication overhead

Disaggregated Flash Storage

• Nodes with compute and memory resources are connected to storage servers

Client

Memory

Server

Storage

Switch (Ethernet / InfiniBand / CXL)

Compute

Client

Memory

Compute

Client

Memory

Compute

Server

Storage

Server

Storage

Additional

overhead

3

Cache Benefits for Disaggregated Storage

• Absorb requests for frequently accessed data

• Reduce network and storage traffic and contention

• Reduce latency by accessing data in the cache

However, benefits and influences of cache design are under explored/not-public.

4

• Background

• Motivation

• Solution

• Future Work and Conclusion

Outline

5

Cache in Disaggregated Storage Architecture

• Client Local Caching

• Server Only Caching

• Client–Server Independent Caching

6

Client

App

Cache

Server

Storage

Client

App

Cache

Client

App

Cache

Cache in Disaggregated Storage Architecture

Client Local Caching

• Utilizing only the client-side cache

• Example: Linux NVMe over Fabric extension, FS-cache for NFS

7

Client

App

Cache

Server

Client

App

Client

App

Cache

Caching in Disaggregated Storage Architecture

Client Local Caching

• Example: Linux NVMe over Fabric extension

POSIX IO Data read()

NVMe Layer

NVMe request

fadvise()

Cache

Network layer

Storage

Cache in Disaggregated Storage Architecture

Client Local Caching

• Benefits:

• Reduces network communication overhead when locality is good

• Saves storage server CPU time by letting it only do IO jobs

• Drawbacks:

• Moves data through network after a cache miss

• Overlooks memory resource in server-side for caching (up to hundreds of GB)

9

Cache in Disaggregated Storage Architecture

Server Only Caching

• Deploying cache only on server side

• Example: Azure Blob Storage, Amazon S3

Client

App

Server

Cache

Client

App

Client

App

Storage

10

Cache in Disaggregated Storage Architecture

Server Only Caching

• Example: Azure Blob Storage

Client

App

Server

Cache

Client

App

Client

App

Storage

POSIX IO Data
Cache Control

Header

fetchevict

11

Network layer

Cache in Disaggregated Storage Architecture

Server Only Caching

• Example: Azure Blob Storage

Client

App

Server

Cache

Client

App

Client

App

Storage

POSIX IO Data
Cache Control

Header

fetchevict

12

Network layer

{

max-age: 5 sec

public

max-stale: 10 sec

}

Cache in Disaggregated Storage Architecture

Server Only Caching

• Benefits:

• Enables easy client data sharing as all requests go through the server

• Saves client-side memory for application use

• Drawbacks:

• Suffers from network latency for every request

• Causes high server CPU usage due to cache management

13

Cache in Disaggregated Storage Architecture

Client-Server Independent Caching

• Leveraging caches on both sides that are managed independently

• Example: Azure Managed Disk, Databricks Query Caching

Client Client

Server

Storage

App

Cache

App

Cache

Cache

Client

App

Cache

14

Cache in Disaggregated Storage Architecture

Client-Server Independent Cache

• Example: Azure Managed Disk, backed by Azure Blob Storage

Client Client

Server

Storage

App

Cache

App

Cache

Cache

Client

App

Cache

POSIX IO Data POSIX IO

requests Data

DataBIO

Cache
Policy

15

Network layer

Cache in Disaggregated Storage Architecture

Client–Server Independent Caching

• Benefit:

• Utilizes memory resources as caches in both clients and servers

• Absorbs write-back with a secondary cache layer, thereby reducing stalls

• Drawback:

• Causes data duplication due to invisibility between clients and servers

• Leads to suboptimal behavior due to cache management conflict

16

Cache in Disaggregated Storage Architecture

To sum up:

• Different caching approaches have fundamentally different architectures

• Strengths and weaknesses of each approach vary across dimensions

• No single approach is optimal in all scenarios

17

Need a multi-dimensional evaluation to uncover the characteristics

• Background

• Motivation

• Solution

• Future Work and Conclusion

Outline

18

Experiment Setup

• Hardware Platform

• 1 client node and 1 server node

• Each machine has

• one 16-core Intel Xeon Silver CPU

• 960 GB Samsung PCIe4 NVMe SSDs

• 100 Gbps Mellanox ConnectX-6 NIC, with a 100 Gbps Ethernet switch

• Workload

• Total of 128 GB split across 32 threads, with cache warm-up

• For all 3 approaches, total cache size is limited to 36 GB

19

Cache Duplication

Client-Server Independent caching has high cache duplication

Workload Rand read Rand write Seq read Seq write

Duplication ratio 22.73% 22.56% 21.45% 23.73%

20

Client

App

Cache

Server

Cache

Storage

......

Read(0,4k)

Client

App

Cache

Cache Duplication

prefetchprefetch

21

Workload Rand read Rand write Seq read Seq write

Duplication ratio 22.73% 22.56% 21.45% 23.73%

Throughput Comparison

• Independent client-server caching performs worse under read workload

• Cache duplication reduces effective cache space and degrades read performance

22

Throughput Comparison

• Client-local and Server-only caching performs worse under write workload

• Absence of a secondary cache layer worsens eviction-induced stalls

23

Throughput Comparison

• Client-local and Server-only caching performs worse under write workload

• Absence of a secondary cache layer worsens eviction-induced stalls

Client

App

Cache

Server

Storage

......

Cache evict

Client

App

Cache

network + PCIe

24

Throughput Comparison

• Client-local and Server-only caching performs worse under write workload

• Absence of a secondary cache layer worsens eviction-induced stalls

Client

App

Cache

......

Cache evict

Client

App

Cache

Server

Cache

Storage

network

25

Unfairness between Clients

• Performance of different threads vary dramatically using Independent caching

• Skewed cache occupancy across different caches leads to unfairness

5.7x

26

Summary of Challenges

• Independent caching loses effective cache capacity due to invisibility

• Client local and Server only caching suffer from lack of a secondary cache layer

• All caching approaches lack cache fairness guarantee

27

• Background

• Motivation

• Solution

• Future Work and Conclusion

Outline

28

Proposed – Coordination Cache across Clients and Servers

• Expose visibility and control of server cache to clients through richer abstractions

• Split cache management workload across clients and servers

• Deploy different forms of cache indexes on the client and server side

• Manage server-side resource for cache fairness

29

Client-Side Cache Management

Client

Cache

Server

Cache

Client

Cache

......

Daemon

RDMA read / write load / evict

Cache

30

• Unified client-side index for client and server caches

• One-side RDMA operations for accessing server cache entities

• Message passing interfaces for cache control and management

Server-Side Cache Management

• Lightweight cache metadata for tracking server-side cache

• Resource monitoring for cache fairness

• Utilizing clients’ hints for adaptive cache policy

Server

Client Space

Cache

Daemon

add evict

Cache

prefetch reclaim

Cache Metadata Resource Monitor

monitor

Storage Memory Processors

31

• Background

• Motivation

• Solution

• Future Work and Conclusion

Outline

32

Challenges for Cache Coordination

• Efficient abstractions for clients to provide hints and control server-side cache

• Coordinated client-server cache index for minimizing synchronization overhead

• Isolation and security in multi-tenant environments

• Consistency control across multiple clients' local caches

33

Conclusion

• Analyze different caching approaches in disaggregated storage architecture

• Conduct a multi-dimensional evaluation

• Propose a preliminary solution for client-server cache coordination

34

Linjie Ma (linjie.ma@rutgers.edu)
Rutgers University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

